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reflections are needed to specify the origin. Seminvariants are
tabulated by Hauptman & Karle (1956, 1959), Giacovazzo
(1974), Karle (1974, pp. 339-358), Lessinger (1975) and
Hovmoller (1978). The kinds of reflections that will specify
(or fix) the origin can be derived from the seminvariant
vector and modulus (Hauptman & Karle, 1956). The
following rule holds:

A set of reflections specify the origin if and only if they are
linearly independent and primitive relative to the semin-
variant modulus (w).

This rule may be turned into a simple method to determine
whether a given set of reflections will specify the origin or
not.

1. Reduce all indices of the reflections modulo the
elements of the seminvariant vector.

2. Make an n x n matrix of the n reduced reflections used
for origin specification.

3. If there are one or two polar axes the rows (but not the
columns) of the matrix may be subtracted from cach other in
order to reduce the indices to 0 or 1 if possible. All indices
may again be reduced modulo the seminvariant vector
between each such subtraction.

4. If it is possible to reduce the matrix down to where its
determinant is +1 or —1. then the origin is fixed, otherwise
not.

The moduli function is such that n (modulo m) means that m
is subtracted from n until a number j. 0 < j < m, is reached.
Thus 2 (modulo 2) — 0, 7 (modulo 0) = 7 and 35 (modulo
3)=2.

The method presented here is a generalization of all the
different rules for origin specification in specific space
groups. such as those tabulated by Karle (1974, pp.
345-349).

Example P2,2,2,

Docs the set of reflections (5,14.7). (3.3.3) and (5,6.8) fix
the origin?

1. Reduce all indices modulo (2,2.2): (1,0,1), (1.1,1) and
(1.0.0).

2. Make an n x n matrix of the vectors above:

3. There arc no polar axes (no moduli arc =0) so we
continue with 4.

4. The determinant is calculated to be =0+ 0+ 0 —
0 -- I — 0 = —1 and the origin is fixed.

Example Pm

Is the origin fixed by the reflections (5.1,7). (7,3,2) and
(0.9.1)?

1. Reduce all indices modulo (0.2.0): (5,1.7), (7.1.2) and
(0.1.1).

2. The n x n matrix will become:

3. There are two polar axes (x and z) and we may reduce
the matrix:

5 1 17 S 17 11 17

71 2}-{2 0 -5})1—-42 0 -5}~

0o 1 1 o 1 1 0 1 1

1 —16 0 1 0 O 1 0 O

2 0 -59)-12 0 -5191-+10 0 =51}~
0 1 1 0 1 1 0 1 1

1 0 0

0 1 0}

0 1 1

4. The determinant is equal to — 1 and the origin is fixed.

Example P4

The seminvariant vector of P4 is (A + k.[) modulo (2.0).
Since there are only two elements of the seminvariant vector
the origin may be specified by only two reflections.

Try (S17)and (712).

1. The h and & indices should be added as is seen from
(h+ k, . Weget(5+ 1.7)and (7 + 1.2) or (6.7) and (8.2).
These are reduced modulo (2,0) to give (0.7) and (0,2).

2. The 2 x 2 matrix becomes

L)

3. Already. before reduction of the matrix, we see that the
determinant will be = 0, and the origin is not fixed.

Try another set of reflections: (5.14,7) and (3.3.3).

1. (5+14.7) and (3 + 3, 3) are (19,7) and (6,3). When
reduced modulo (2,0) we get (1,7) and (0,3).

2. The 2 x 2 matrix becomes

b3}

3. The matrix may be reduced according to:

1 7 11 11 1 1
o 3/ \o 3 -3 0 1 o)
4. The determinant is equal to —1 and the origin is fixed.

Example P6

The seminvariant vector of P6 is (2h + 4k + 3/) modulo
{6) (Hovmoller. 1978). Only one reflection is needed to
specify the origin.
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Try (517).
1. 2x5+4x1+3x7) 35=—1 modulo 6, and the
origin may be fixed by this reflection.
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Abstract

A straightforward method using Legendre series enables the
orientation distribution in a specimen with uniaxial symmetry
to be derived from the azimuthal profile of a single arbitrary
reflection. Moreover, the moments of the distribution
{P,,(cosa)) can be obtained directly from the azimuthal
profile without needing to calculate the complete distribution.

Pole figures derived from X-ray diffraction measurements
are the standard method of quantifying orientation in
crystalline materials. Similarly, the azimuthal profiles of the
diffuse arcs found for liquid crystals (Leadbetter &
Wrighton. 1979) and non-crystalline polymers (Wilchinsky,
1968) have been used to give a measure of orientation.

In polymers and liquid crystals, it is usually the orientation
distribution for the molecular axes which is required, but this
is only obtained directly from a pole figure if there is a strong
reflection from planes perpendicular to the molecular axes.
However, Wilchinsky (1963) has shown that, provided the
molecules are random about their axes. a single arbitrary
reflection can give the value of {cos?a), where a is the angle
between the molecular axis and the specimen axis.

In this communication we show that, for a specimen with
uniaxial symmetry. the higher moments of the orientation
distribution can also be obtained from the azimuthal profile
of an arbitrary reflection. Hence the full orientation distri-
bution can be calculated without recourse to solving integral
equations or inverting matrices.

The scattering from a distribution of independent
molecules is given by a convolution of the orientation
distribution of molecular axes with the scattering for a single
molecule (Ruland & Tompa, 1968). If both the orientation
distribution D{a) and the molecular scattering /™(a) have
cylindrical symmetry, then the resultant scattering /() also
has cylindrical symmetry (Deas, 1952) and all three
functions can be expanded in series of even-order Legendre
polynomials (P,,), e.g.

()= 3 I,, P,,(cos ),
n=0
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where
/2
I,,=@n + 1) [ I(a) Py, (cosa)sina da.
0
Similar formulae apply to D(«) and I™(«).
It has been shown (Deas, 1952) that the coefficients of the
three series are related by
I i D, It
2n T 4n + 1 2n " 2n*

which implies that

<P2n>l = <Pzn>n<P2n>l"‘~
where
/2

[ I(a) Py,(cosa)sina da
0
(Panyi= . (1

/2
[ I(a) sin a da
0

Hence. if I(a) and /™(a) are known, we can derive the
orientation parameters of the distribution:

<P2n>l
Py

Now. a sharp reflection at angle a, to the molecular axis
gives

<P2n>D =

<P2n>l'" = Pln(COS (‘0)
and therefore the orientation parameters are given by

<P2n>l

Py Sy = —2
NERC P,,(cosa,)

(2)
For the special cases a, = 0 ora, = n/2 this becomes

Meridional reflection (aq = 0): {Py,>, = (P,
Equatorial reflection (1, = 7/2):
(_l)n 22"()1!)2

PZn I
2n)! Pan)

<P2n>D:
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