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Fig. 1. Principles of the integration network. 

When the defect possesses a direct image, its shape is 
roughly calculated according to the kinematical theory 
(Authier, 1967) and the length of the integration step is 
decreased in the corresponding area (Fig. I). 

The Takagi-Taupin equations are then integrated. The 
program automatically switches from an integration net- 
work taking into account the direct image to another one 
without it, when it is needed. This automatic adaptation of 
the program to the diffraction conditions permits the 
simulation of the section topograph of a dislocation with high 
accuracy. We have been able, for example, to determine the 
direction of the Burgers vector of a dislocation through the 
features of its direct image (Fig. 2). 

Thus it is now possible to simulate section topographs with 
good accuracy in all parts of the image. More details about 
this new routine DEFV will be given in a further paper. 

Topograph shown in Fig. 2 is from Dr M. Lefeld- 
Sosnowska (University of Warsaw). Its contrast will be 
discussed in a work currently in progress in collaboration 
with A. Authier. 

Fig. 2. Section topograph of a silicon wafer, Mo Ka, 333. 
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Abstract 

A general and simple rule for the derivation of which 
reflections should be used for fixing the origin in any of the 
230 space groups is given. 
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The number of reflections needed to specify the origin is 
identical to the number of elements in the seminvariant 
vector of that space group. For example, in P21212 ~, the 
seminvariant vector is (hkl) modulo (2 2 2). Thus three 
reflections are needed to specify the origin. In P4 the 
seminvariant vector is (h + k,/) modulo (2,0) and two 
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reflections are needed to specify the origin. Seminvariants are 
tabulated by Hauptman & Karle (1956, 1959), Giacovazzo 
(1974), Karle (1974, pp. 339-358),  Lessinger (1975) and 
Hovm611er (1978). The kinds of reflections that will specify 
(or fix) the origin can be derived from the seminvariant 
vector and modulus (Hauptman & Karle, 1956). The 
following rule holds: 

A set of reflections specify the origin if and only i f they are 
linearly independent and primitive relative to the semin- 
variant modulus (~o~). 

This rule may be turned into a simple method to determine 
whether a given set of reflections will specify the origin or 
not. 

1. Reduce all indices of the reflections modulo the 
elements of the seminvariant vector. 

2. Make an n x p7 matrix of the n reduced reflections used 
for origin specification. 

3. If there are one or two polar axes the rows (but not the 
columns) of the matrix may be subtracted from each other in 
order to reduce the indices to 0 or 1 if possible. All indices 
may again be reduced modulo the seminvariant vector 
between each such subtraction. 

4. If it is possible to reduce the matrix down to where its 
determinant is +1 or - 1 ,  then the origin is fixed, otherwise 
not. 

The moduli function is such that n (modulo m) means that m 
is subtracted from n until a number j ,  0 < j  < m, is reached. 
Thus 2 (modulo 2) 0, 7 (modulo 0) 7 and 35 (modulo 
3 ) = 2 .  

The method presented here is a generalization of all the 
different rules for origin specification in specific space 
groups, such as those tabulated by Karle (1974, pp. 
345-349). 
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3. There are two polar axes (x and z) and we may reduce 
the matrix: 
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4. The determinant is equal to - l and the origin is fixed. 

Example P4 

The seminvariant vector of P4 is (h + k,/) modulo (2,0). 
Since there are only two elements of the seminvariant vector 
the origin may be specified by only two reflections. 

Try (5 I 7) and (7 1 2). 
1. The h and k indices should be added as is seen from 

(h + k,/). We get (5 + 1, 7) and (7 + 1, 2) or (6,7) and (8,2). 
These are reduced modulo (2,0) to give (0,7) and (0,2). 

2. The 2 × 2 matrix becomes 

Example P212 ~2~ 

Does the set of reflections (5,14,7), (3,3,3) and (5,6,8) fix 
the origin ? 

1. Reduce all indices modulo (2,2,2): (1,0,1), (I,1,1) and 
(1,0,0). 

2. Make an n x n matrix of the vectors above: 

1 

0 

3. There are no polar axes (no moduli are = 0) so we 
continue with 4. 

4. The determinant is calculated to be - - 0 + 0 + 0 -  
0 -- I - 0 = - 1  and the origin is fixed. 

Example Pm 

Is the origin fixed by the reflections (5,1,7), (7,3,2) and 
(0,9,])? 

1. Reduce all indices modulo (0,2,0): (5,1,7), (7,1,2) and 
(0,1,1). 

2. The n x n matrix will become: 

(00 :) 
3. Already. before reduction ot" the matrix, we see that the 

determinant will be = 0, and the origin is not fixed. 
Try another set of reflections: (5.14,7) and (3,3,3). 
1. (5 + 14, 7) and (3 + 3, 3) are (19,7) and (6,3). When 

reduced modulo (2,0) we get (I,7) and (0,3). 
2. The 2 x 2 matrix becomes 

(; 
3. The matrix may be reduced according to: 

4. The determinant is equal to - l and the origin is fixed. 

Example P6 

The seminvariant vector of P6 is (2h + 4k + 3/) modulo 
{6) (Hovm611er. 1978). Only one reflection is needed to 
specify the origin. 
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Try (5 1 7). 
1. (2 x 5 + 4 x 1 + 3 x 7) 35 = - i  modulo 6, and the 

origin may be fixed by this reflection. 
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Abstract 

A straightforward method using Legendre series enables the 
orientation distribution in a specimen with uniaxial symmetry 
to be derived from the azimuthal profile of a single arbitrary 
reflection. Moreover, the moments of the distribution 
( P 2 , ( c o s , ) )  can be obtained directly from the azimuthal 
profile without needing to calculate the complete distribution. 

Pole figures derived from X-ray diffraction measurements 
are the standard method of quantifying orientation in 
crystalline materials. Similarly, the azimuthal profiles of the 
diffuse arcs found for liquid crystals (Leadbetter & 
Wrighton, 1979) and non-crystalline polymers (Wilchinsky, 
1968) have been used to give a measure of orientation. 

In polymers and liquid crystals, it is usually the orientation 
distribution for the molecular axes which is required, but this 
is only obtained directly from a pole figure if there is a strong 
reflection from planes perpendicular to the molecular axes. 
However, Wilchinsky (1963) has shown that, provided the 
molecules are random about their axes, a single arbitrary 
reflection can give the value of (cos 2 . ) ,  w h e r e ,  is the angle 
between the molecular axis and the specimen axis. 

In this communication we show that, for a specimen with 
uniaxial symmetry, the higher moments of the orientation 
distribution can also be obtained from the azimuthal profile 
of an arbitrary reflection. Hence the full orientation distri- 
bution can be calculated without recourse to solving integral 
equations or inverting matrices. 

The scattering from a distribution of independent 
molecules is given by a convolution of the orientation 
distribution of molecular axes with the scattering for a single 
molecule (Ruland & Tompa, 1968). If both the orientation 
distribution D( , )  and the molecular scattering I ' ( - )  have 
cylindrical symmetry, then the resultant scattering I ( , )  also 
has cylindrical symmetry (Deas, 1952) and all three 
functions can be expanded in series of even-order Legendre 
polynomials (P2,), e.g. 

I((~) = ~ 12, P2 , ( cos , ) ,  
n = 0  
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where 
,r/2 

I:,  = (4n + 1) J 10t) P2, (cosr~) s in ,  d , .  
0 

Similar formulae apply to D(r~) and ImO0. 
It has been shown (Deas, 1952) that the coefficients of the 

three series are related by 

2n 
12, - - -  D2, I~,, 

4 n +  1 
which implies that 

where 
( P2,,)t = ( P2.)~)( P2.)x ,., 

,r/2 

.f I ( - )  P2,,(cos.)  s in -  d .  
o 

(P2 , ) ,  = ./2 (I) 

f I ( - )  s i n -  d .  
0 

Hence. if 1( . )  and Ira(.) are known, we can derive the 
orientation parameters of the distribution: 

(P2,,), 
( P2,,),o - ( p2,, ) - - - - -  ~ • 

Now. a sharp reflection at angle "o to the molecular axis 
gives 

(P2n)l" = P2.(c°s"0)  

and therefore the orientation parameters are given by 

(P2,,)t 
= . (2) 

(P2n)o p2,,(cOS.o ) 

For the special c a se s ,  o = 0 o r .  o -- n/2 this becomes 

Meridional reflection (% = 0): (P2 , )o  = (P2,) t :  

Equatorial reflection (, 0 = zt/2): 

( -  1)" 22"(n!) 2 
(P2. )o  -- ( P 2 . ) r  

(2n)! 
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